Poisson surfaces and algebraically completely integrable systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T H E Arnol'd Formula for Algebraically Completely Integrable Systems

Let F: V —» R m be a real algebraic mapping and let us denote b y D c R m the set of its critical values. We assume that F:V \ F~(D) —• R m \ D is a proper topological fibration so that we can consider the real monodromy of F defined as the action of 7n(R \ D) on H*(F~(c), Z), c e R m \ D. We propose to study the real monodromy of mappings F which are defined on a symplectic manifold (V, u) and...

متن کامل

Construction of Completely Integrable Systems by Poisson Mappings

Pulling back sets of functions in involution by Poisson mappings and adding Casimir functions during the process allows to construct completely integrable systems. Some examples are investigated in detail.

متن کامل

Completely Integrable Bi-hamiltonian Systems

We study the geometry of completely integrable bi-Hamiltonian systems, and in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the af...

متن کامل

Regular deformations of completely integrable systems

We study several aspects of the regular deformations of completely integrable systems. Namely, we prove the existence of a Hamiltonian normal form for these deformations and we show the necessary and sufficient conditions a perturbation has to satisfy in order for the perturbed Hamiltonian to be a first order deformation.

متن کامل

Symplectic theory of completely integrable Hamiltonian systems

This paper explains the recent developments on the symplectic theory of Hamiltonian completely integrable systems on symplectic 4-manifolds, compact or not. One fundamental ingredient of these developments has been the understanding of singular affine structures. These developments make use of results obtained by many authors in the second half of the twentieth century, notably Arnold, Duisterm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2015

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2014.10.009